Boost Phrase-level Polarity Labelling with Review-level Sentiment Classification

نویسندگان

  • Yongfeng Zhang
  • Min Zhang
  • Yiqun Liu
  • Shaoping Ma
چکیده

Sentiment analysis on user reviews helps to keep track of user reactions towards products, and make advices to users about what to buy. State-of-the-art review-level sentiment classification techniques could give pretty good precisions of above 90%. However, current phrase-level sentiment analysis approaches might only give sentiment polarity labelling precisions of around 70% ∼ 80%, which is far from satisfaction and restricts its application in many practical tasks. In this paper, we focus on the problem of phrase-level sentiment polarity labelling and attempt to bridge the gap between phrase-level and review-level sentiment analysis. We investigate the inconsistency between the numerical star ratings and the sentiment orientation of textual user reviews. Although they have long been treated as identical, which serves as a basic assumption in previous work, we find that this assumption is not necessarily true. We further propose to leverage the results of review-level sentiment classification to boost the performance of phrase-level polarity labelling using a novel constrained convex optimization framework. Besides, the framework is capable of integrating various kinds of information sources and heuristics, while giving the global optimal solution due to its convexity. Experimental results on both English and Chinese reviews show that our framework achieves high labelling precisions of up to 89%, which is a significant improvement from current approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of different approaches to Sentence-Level Sentiment Classification

Sentiment classification is a way to analyze the subjective information in the text and then mine the opinion. Sentiment analysis is the procedure by which information is extracted from the opinions, appraisals and emotions of people in regards to entities, events and their attributes. In decision making, the opinions of others have a significant effect on customers ease, making choices with re...

متن کامل

A Statistical Parsing Framework for Sentiment Classification

We present a statistical parsing framework for sentence-level sentiment classification in this article. Unlike previous works that use syntactic parsing results for sentiment analysis, we develop a statistical parser to directly analyze the sentiment structure of a sentence. We show that complicated phenomena in sentiment analysis (e.g., negation, intensification, and contrast) can be handled t...

متن کامل

Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis

This paper presents a new approach to phrase-level sentiment analysis that first determines whether an expression is neutral or polar and then disambiguates the polarity of the polar expressions. With this approach, the system is able to automatically identify the contextual polarity for a large subset of sentiment expressions, achieving results that are significantly better than baseline.

متن کامل

ECNU: A Combination Method and Multiple Features for Aspect Extraction and Sentiment Polarity Classification

This paper reports our submissions to the four subtasks of Aspect Based Sentiment Analysis (ABSA) task (i.e., task 4) in SemEval 2014 including aspect term extraction and aspect sentiment polarity classification (Aspect-level tasks), aspect category detection and aspect category sentiment polarity classification (Categorylevel tasks). For aspect term extraction, we present three methods, i.e., ...

متن کامل

Sentiment Analysis of Short Informal Texts

We describe a state-of-the-art sentiment analysis system that detects (a) the sentiment of short informal textual messages such as tweets and SMS (message-level task) and (b) the sentiment of a word or a phrase within a message (term-level task). The system is based on a supervised statistical text classification approach leveraging a variety of surfaceform, semantic, and sentiment features. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1502.03322  شماره 

صفحات  -

تاریخ انتشار 2015